Detection of Multiple Change–Points in Multivariate Time Series

نویسندگان

  • Marc Lavielle
  • Gilles Teyssière
چکیده

We consider the multiple change–point problem for multivariate time series, including strongly dependent processes, with an unknown number of change–points. We assume that the covariance structure of the series changes abruptly at some unknown common change–point times. The proposed adaptive method is able to detect changes in multivariate i.i.d., weakly and strongly dependent series. This adaptive method outperforms the Schwarz criteria, mainly for the case of weakly dependent data. We consider applications to multivariate series of daily stock indices returns and series generated by an artificial financial market.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Trend analysis and detection of precipitation fluctuations in arid and semi-arid regions

The most important impacts of climate change relate to temperature and precipitation. Precipitation is particularly important, because changes in precipitation patterns may lead to floods or droughts in different areas. Also, precipitation is a major factor in agriculture and in recent years interest has increased in learning about precipitation variability for periods of months to annual and s...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Bayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart

The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...

متن کامل

Multiple change-point detection for high-dimensional time series via Sparsified Binary Segmentation

Time series segmentation, a.k.a. multiple change-point detection, is a well-established problem. However, few solutions are designed specifically for high-dimensional situations. In this paper, our interest is in segmenting the second-order structure of a high-dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005